Roles of nonhomologous end-joining pathways in surviving topoisomerase II-mediated DNA damage.

نویسندگان

  • Mobeen Malik
  • Karin C Nitiss
  • Vanessa Enriquez-Rios
  • John L Nitiss
چکیده

Topoisomerase II is a target for clinically active anticancer drugs. Drugs targeting these enzymes act by preventing the religation of enzyme-DNA covalent complexes leading to protein-DNA adducts that include single- and double-strand breaks. In mammalian cells, nonhomologous repair pathways are critical for repairing topoisomerase II-mediated DNA damage. Because topoisomerase II-targeting agents, such as etoposide, can also induce chromosomal translocations that can lead to secondary malignancies, understanding nonhomologous repair of topoisomerase II-mediated DNA damage may help to define strategies that limit this critical side effect on an important class of anticancer agents. Using Saccharomyces cerevisiae as a model eukaryote, we have determined the contribution of genes required for nonhomologous end-joining (NHEJ) for repairing DNA damage arising from treatment with topoisomerase II poisons, such as etoposide and 4'-(9-acridinylamino)methanesulfon-m-anisidide (mAMSA). To increase cellular sensitivity to topoisomerase II poisons, we overexpressed either wild-type or drug-hypersensitive alleles of yeast topoisomerase II. Using this approach, we found that yku70 (hdf1), yku80 (hdf2), and other genes required for NHEJ were important for cell survival following exposure to etoposide. The clearest increase in sensitivity was observed with cells overexpressing an etoposide-hypersensitive allele of TOP2 (Ser740Trp). Hypersensitivity was also seen in some end-joining defective mutants exposed to the intercalating agent mAMSA, although the increase in sensitivity was less pronounced. To confirm that the increase in sensitivity was not solely due to the elevated expression of TOP2 or due to specific effects of the drug-hypersensitive TOP2 alleles, we also found that deletion of genes required for NHEJ increased the sensitivity of rad52 deletions to both etoposide and mAMSA. Taken together, these results show a clear role for NHEJ in the repair of DNA damage induced by topoisomerase II-targeting agents and suggest that this pathway may participate in translocations generated by drugs, such as etoposide.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypersensitivity of NHEJ Mutants to VP-16 and ICRF-193: Implications for the Repair of Topoisomerase II-mediated DNA Damage

Abbreviations: DSB, double-strand break; ES, embryonic stem; HR, homologous recombination; ICRF-193, meso-2,3-bis(2,6-dioxopiperazin-4-yl)butane; m-AMSA, 4'-(9-acridinylamino)methanesulfon-m-aniside; NHEJ, nonhomologous DNA endjoining; topo, DNA topoisomerase; TOP2α, the gene encoding topo IIα; VM-26, 4'demethylepipodophyllotoxin thenylidene-β-D-glucoside (teniposide); VP-16, demethylepipodophy...

متن کامل

Smarcal1 promotes double-strand-break repair by nonhomologous end-joining

Smarcal1 is a SWI/SNF-family protein with an ATPase domain involved in DNA-annealing activities and a binding site for the RPA single-strand-DNA-binding protein. Although the role played by Smarcal1 in the maintenance of replication forks has been established, it remains unknown whether Smarcal1 contributes to genomic DNA maintenance outside of the S phase. We disrupted the SMARCAL1 gene in bot...

متن کامل

DNA Ligase IV and Artemis Act Cooperatively to Suppress Homologous Recombination in Human Cells: Implications for DNA Double-Strand Break Repair

Nonhomologous end-joining (NHEJ) and homologous recombination (HR) are two major pathways for repairing DNA double-strand breaks (DSBs); however, their respective roles in human somatic cells remain to be elucidated. Here we show using a series of human gene-knockout cell lines that NHEJ repairs nearly all of the topoisomerase II- and low-dose radiation-induced DNA damage, while it negatively a...

متن کامل

Analysis of the Repair of Topoisomerase II DNA Damage

A large number of anti-cancer chemotherapeutics target DNA topoisomerases. Etoposide is a specific topoisomerase II poison that causes reversible double strand DNA breaks. This project analyses the repair of DNA damage induced by etoposide, a common anti-cancer chemotherapeutic. Through the comparison of two known DNA repair pathways, anti-cancer chemotherapy may become more cytotoxic. Double s...

متن کامل

Topoisomerase II-Mediated DNA Damage Is Differently Repaired during the Cell Cycle by Non-Homologous End Joining and Homologous Recombination

Topoisomerase II (Top2) is a nuclear enzyme involved in several metabolic processes of DNA. Chemotherapy agents that poison Top2 are known to induce persistent protein-mediated DNA double strand breaks (DSB). In this report, by using knock down experiments, we demonstrated that Top2alpha was largely responsible for the induction of gammaH2AX and cytotoxicity by the Top2 poisons idarubicin and e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 5 6  شماره 

صفحات  -

تاریخ انتشار 2006